If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+18x-120=0
a = 4.9; b = 18; c = -120;
Δ = b2-4ac
Δ = 182-4·4.9·(-120)
Δ = 2676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2676}=\sqrt{4*669}=\sqrt{4}*\sqrt{669}=2\sqrt{669}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-2\sqrt{669}}{2*4.9}=\frac{-18-2\sqrt{669}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+2\sqrt{669}}{2*4.9}=\frac{-18+2\sqrt{669}}{9.8} $
| 17=y/5+16 | | 38 =n12 | | 12=-3(2x-16) | | x^2-14x=218 | | -2k+6=-8 | | 3(2x+3)/13=2x- | | -7k+2=-61 | | -52-3v=-16v+13 | | -52-3v=-16+13 | | x^2+5x-368=0 | | 3z^2+8z−9=0 | | 3z2+8z−9=0 | | 3(2-x)=-3x+2 | | c+7/10+2=9c/6 | | 27^(x+5)=81 | | 6x+2(x+7(=46 | | 9x–5(x–1)–1=1 | | Y^=-11y | | 80023=8.0023×10^n | | 4x+12+2x=23 | | X-2/x=10/15 | | 50x+100=25x+225 | | 24=-9d(6d+8) | | 6n+7=67 | | 9p^2-9p=0 | | 110x=90x | | 2(10r-7)-2(1=10r)=-r+2r | | 1/2=(6w+8) | | 4x-35+107=180 | | 1.2x-1.2=1x | | 11u=48+5u | | 1/2=96w+8) |